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a b s t r a c t

The Chebyshev–Gauss–Radau discrete version of the polar-diffusion operator, 1
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being the azimuthal wave number, presents complex conjugate eigenvalues, with negative
real parts, when it is associated with a Neumann boundary condition imposed at r = 1. It is
shown that this ellipticity marginal violation of the original continuous problem is genuine
and not due to some round-off error amplification. This situation, which does not lead per se
to any particular computational difficulty, is taken here as an opportunity to numerically
check the sensitivity of the quoted ellipticity to slight changes in the mesh. A particular
mapping is chosen for that purpose. The impact of this option on the ellipticity and on
the numerical accuracy of a computed flow is evaluated.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Chebyshev or Legendre pseudo-spectral methods [1] are of common use for solving the coupled balance equations of
momentum, heat and/or mass transfer. Temporal discretization of these equations often leads to elliptic Helmholtz prob-
lems. When these multidimensional elliptic problems are separable, their numerical solution can be efficiently obtained
using the Successive Diagonalization Technique (SDT), [2,3]. This approach amounts to work in the Helmholtz operator
numerical eigenspace, itself being constructed from the tensorial product of eigenspaces of the 1D second derivatives (see
[2]). This leads to cheap (for DNS of turbulence, for instance, [4]) and accurate numerical solutions of a large variety of dif-
fusion problems. In particular, each transported quantity has its own set of boundary conditions, possibly different, more-
over, in each space direction. A unique 1D coding structure allows us to treat all these boundary conditions. This includes
the numerical and computational treatment of the pressure problem, a quasi-Poisson operator [5,6], which does not require
any boundary condition to be inverted, as expected since the pressure is known to be often deprived from any boundary
condition. In fact the SDT can be implemented in many multidimensional configurations where the differential problem
is separable. It works also when there are one or more zero eigenvalues, as in the cases of diffusion problems with Neumann
conditions over the whole boundary or of the quasi-Poisson operator for the pressure. It could also work with complex eigen-
values. By the way, the SDT has been extended in [7] to the case where the boundary conditions involve mixed tangential
and normal derivatives.

With regard to that, a Galerkin approach [8] for solving these coupled multidimensional elliptic systems does not appear
to be as convenient. And there is no way to design a Galerkin formulation to the quasi-Poisson problem. Furthermore the SDT
works as well in the physical space so that no back and forth transformation is needed between the physical and spectral
spaces.
. All rights reserved.
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What makes this SDT so easy to implement and so efficient is however the ellipticity of the original continuous problem,
provided this ellipticity be preserved at the discrete level. This is obtained in most of the cases, for instance in the Cartesian
configuration, viz. with @2

@z2 completed with any boundary condition imposed at z = ±1. In cylindrical coordinates, the easy
implementation of the SDT therefore depends upon the ellipticity of the companion operator of @2

@z2, namely the polar operator
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; k being the azimuthal wave number. Polar ellipticity is preserved in its Chebyshev–Gauss–Radau discrete

version when a Dirichlet boundary condition is imposed at r = 1, say. When Neumann condition is imposed at r = 1, a few
couples of complex conjugate eigenvalues, with negative real parts, show up for given values of k when the radial cut-off
frequency N verifies N > 13. This paper shows that the presence of these complex eigenvalues, which marginally violates
the ellipticity of the original polar problem, is genuine and not due to some round-off error amplification associated itself
with the bad conditioning of the Gauss–Radau matrix.

As said before, the SDT could still be used, remaining efficient, at the expense of an adequate coding of the complex alge-
bra which comes partially into play. Nevertheless it is conceptually interesting to take advantage of this configuration for
checking the sensitivity of the ellipticity upon slight changes in the mesh. To this end we have chosen a method, not de-
signed for this purpose, which can continuously stretch the Gauss–Radau grid until making a regular grid. Does a slight
change from a Gauss–Radau grid lead back to the ellipticity of the operator? It is observed that this does help for circum-
venting the occurence of complex eigenvalues. An evaluation is made of the impact this approach has on the accuracy of
the solution.

2. Continuous problems

2.1. The inhomogeneous problem

Let us consider the diffusion equation in polar coordinates (er,e/),
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 !
u ¼ f ðr;/Þ with r 2 ð0;1Þ and / 2 ½0;2pÞ; ð1Þ
where u(r,/) and f(r,/) are real fields. To be quite general a Robin boundary condition is imposed at r = 1, viz.
auðr ¼ 1;/Þ þ b
@u
@r
ðr ¼ 1;/Þ ¼ cð/Þ with / 2 ½0;2pÞ; ð2Þ
where the real coefficients a and b are assumed to satisfy the ellipticity sufficient condition, a
b > 0. Dirichlet or Neumann con-

ditions respectively correspond to fixing (b = 0, a = 1) or (a = 0, b = 1) in (2). All the fields are necessarily periodic in the azi-
muthal direction. They can therefore be expanded in Fourier series, with
uðr;/Þ
f ðr;/Þ
cð/Þ

0B@
1CA ¼X1

jkj¼0

ûkðrÞ
f̂ kðrÞ

ĉk

0B@
1CAeik/; integer k: ð3Þ
Since the left-hand-side fields are real their k – 0 Fourier components are complex conjugate, �̂kðrÞ ¼ �̂��kðrÞ; � ¼ u; f ; c, for
k – 0. Thus, the unknown fields of the expansion (3) are those which correspond to k P 0 for example. Plugging (3) into
(1) and (2) leads to the following set of mono-dimensional problems,
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ûk ¼ f̂ kðrÞ with r 2 ð0;1Þ and for k ¼ 0; . . . ;1; ð4Þ
each completed with a boundary condition, viz.
aûkðr ¼ 1Þ þ b
dûk

dr
ðr ¼ 1Þ ¼ ĉk for k ¼ 0; . . . ;1: ð5Þ
2.2. The associated homogeneous problems

The associated homogeneous problems read
1
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 !
uk ¼ �k2uk; r 2 ð0;1Þ; k ¼ 0; . . . ;1; ð6Þ
completed with the homogeneous boundary conditions
aukðr ¼ 1Þ þ b
duk

dr
ðr ¼ 1Þ ¼ 0 for k ¼ 0; . . . ;1: ð7Þ
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The analytical solutions of (6) and (7) express in terms of the Bessel functions of the first kind,
ukðrÞ ¼ JkðkrÞ;
where k is any one of the roots, in infinite number, of the following equations,
for k ¼ 0 : aJ0ðkÞ ¼ bkJ1ðkÞ;

for k P 1 : aJkðkÞ þ
b
2

k Jk�1ðkÞ � Jkþ1ðkÞ
� �

¼ 0:
All the k’s are real.

3. Discretized problems

3.1. The inhomogeneous problems

Let N be the radial cut-off frequency and rp, with p = 0, . . . ,N, be the radial location of the Chebyshev–Gauss–Radau col-
location points, where
rp ¼
1
2

1� cos
ð2pþ 1Þp

2N þ 1

� �� �
; p ¼ 0; . . . ;N: ð8Þ
Choosing the Gauss–Radau nodes allows us to avoid the r = 0 singular position which occurs in the operator (4), the closest

node to r = 0 being at r0 ¼ 1
2 1� cos p

2Nþ1

� �� �
’ p

2ð2Nþ1Þ

� �2
. The discrete version of (4) and (5) is obtained by introducing the

polynomial approximation of the ûkðrÞ’s,
ûðNÞk ðrÞ ¼
XN

p¼0

ðûkÞplðNÞp ðrÞ with ðûkÞp � ûðNÞk ðrpÞ;
the lðNÞp ðrÞ’s being the Lagrange polynomials based over the Chebyshev–Gauss–Radau nodes (8). Let D and D(2) be the respec-
tive Gauss–Radau matrix representations of d

dr and 1
r
@
@r r @

@r

� �� �
, the superscript (2) indicating that D(2) is not the square of D.

The discretized version of (4) and (5) reads
XN

q¼0

Dð2Þpq ðûkÞq �
k2

r2
p
ðûkÞp ¼ ðf̂ kÞp; p ¼ 0; . . . ;N � 1; for k ¼ 0; . . . ;1; ð9Þ
where ðf̂ kÞp � f̂ kðrpÞ, and
aðûkÞN þ b
XN

q¼0

DNqðûkÞq ¼ ĉk for k ¼ 0; . . . ;1: ð10Þ
The matrix system (9) is rectangular. It is made square upon eliminating the ðûkÞN ’s through (10), with
ðûkÞN ¼
ĉk � b

PN�1
q¼0 DNqðûkÞq

aþ bDNN
for k ¼ 0; . . . ;1:
The resulting discrete system reads
XN�1

q¼0

Dð2ÞR

� �
pq
ðûkÞq �

k2

r2
p
ðûkÞp ¼ ðf̂ kÞp �

Dð2ÞpN

aþ bDNN
ĉk; p ¼ 0; . . . ;N � 1; ð11Þ
where
ðDð2ÞR Þpq ¼ Dð2Þpq �
bDð2ÞpN DNq

aþ bDNN
: ð12Þ
3.2. The homogeneous problems

Implementing the SDT is then based on the eigenmodes of the matrices Dð2ÞR � k2

r2

� �
which come from the l.h.s. of (11),

wherein k2

r2 stands for the diagonal matrix of entries k2

r2
p
, with p = 0, . . . ,N � 1. Let us therefore introduce the discrete eigenvalue

problem,
XN�1

q¼0

Dð2ÞR

� �
pq
ðbUkÞq �

k2

r2
p

bUk

� �
p
¼ nðbUkÞp; p ¼ 0; . . . ;N � 1 for k ¼ 0; . . . ;1:
It leads for each k to N numerical eigenvalues, nn, for n = 1, . . . ,N, ordered with increasing absolute value of their real parts.
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3.3. The numerical eigenvalues of the polar-diffusion problem

3.3.1. In the Neumann case
For the Cartesian operator, d2

dx2 þ b:c:, the numerical eigenvalues can be expressed analytically, [9], whereas, so far, those of

Dð2ÞR � k2

r2

� �
can only be obtained by numerical experiments. These latter were performed, for the sake of this analysis, for

N 6 200 and k 6 500. In the Dirichlet case, viz. fixing a = 1 and b = 0 in (7) and (12), the nn’s were found as being all real
and negative, nn ¼ �k2

n with real kn’s. The situation is fairly different in the Neumann case, a = 0 and b = 1 in (7) and (12).
Fig. 1 displays the Dirichlet and Neumann numerical spectra obtained with various values of N, all with k = 4. The N eigen-

values are all real and negative. As well known, a significant part of them converges towards the analytical spectrum given
by the envelope (the analytical zone, say), which is common to all these plots. The remaining part of the numerical spectrum
(the numerical zone, say) has a well known specific behavior. But taking now N = 128 and k = 11 for computing the Neumann
spectrum leads to (N � 2) real negative eigenvalues, plus a pair of complex conjugate eigenvalues with real negative parts,
while the N Dirichlet nn’s remain all real and negative. This is shown in Fig. 2 where log10(jRe(nn)j) and log10(jIm(nn)j) are
plotted as functions of log10(n). The pair of complex conjugate eigenvalues occur at the end of the analytical zone, with a
real part falling at the right location. Both (equal) imaginary parts are small, but definitely not compatible with the machine
zero. The lowest k(N) value which leads to complex eigenvalues of Dð2ÞR � k2

r2

� �
has been looked for. The result is given in Fig. 3:

there is at least one particular value of k, k 6 500, for most of the values taken by N, for N P 13, where complex eigenvalues
occur in the Neumann spectrum.
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3.3.2. In the Robin case
When the Robin conditions (5) are adopted, and discretized using a Gauss–Radau grid with N + 1 nodes, the order of mag-

nitude of the Neumann contribution is jbjN2. It is therefore expected that complex eigenvalues will occur in the polar-diffu-
sion problem if jbjN2� jaj.

3.4. Origin of the numerical complex eigenvalues

Should these complex eigenvalues be considered as spurious, and/or simply due to the bad conditioning of the matrix
Dð2ÞR � k2

r2

� �
? The answer is supplied by two numerical tests, both performed with k = 39. As indicated by Fig. 3, complex

eigenvalues occur with N = 18, 19, 20, 21 for example. First, computing them for N = 20 while increasing the number of sig-
nificant digits, as it is made possible by the Mathematica software, shows that the complex eigenvalues are not sensitive to
round-off errors. They definitely converge to more and more accurately determined values, �11879.8 ± 17.3509i, or so. Sec-
ond, computing the eigenvalues for N = 22, now, leads to a purely real spectrum, despite the fact that the matrix conditioning
should be worst than with N = 20. It can thus be concluded that the complex eigenvalues are genuine eigenvalues of the dis-
crete problem.

4. Is the ellipticity sensitive to slight changes of the grid?

4.1. Introduction

The Gauss grids (including the Gauss–Radau and Gauss–Lobatto cases) are known to be required for satisfying two inti-
mately related criteria. First, they give access to the most accurate polynomial interpolation, in a bounded region, of any con-
tinuous function. Second, they preserve in the discrete space the orthogonality relations between the polynomials of the
basis defined in the continuous realm. Should these grids preserve the ellipticity of the continuous operator? The answer
is positive in most of the cases. However, it has been observed that the Projection–Diffusion uncoupling of the velocity
and pressure, the consistent Stokes solver analysed in [6], presents a few couples of complex conjugate eigenvalues when
Dirichlet boundary conditions are imposed on the velocity. This marginal violation of the Stokes ellipticity looks like the
one this paper is devoted to since, in both cases, the discrete operator mixes parts of second and first derivative matrices,
the first derivative coming from $p in the Stokes solver and from the Neumann condition in the present problem.

Let us see therefore if the ellipticity can be recovered by making slight changes in the Gauss–Radau grid.

4.2. The mapping

To this end, we will use a mapping proposed in [10] by Kosloff and Tal-Ezer. Their goal is to increase, from an OðN�2Þ to an
OðN�1Þ limitation, the CFL critical time step value that occurs when solving the 1D hyperbolic equation, on a Gauss–Lobatto
grid. This mapping will thus move our Gauss–Radau nodes of abscissae ri to new locations of abscissae xi, according to the
a-mapping relation
xi ¼ gðri;aÞ ¼
arcsinðariÞ
arcsinðaÞ 2 ð�1;1� for i ¼ 0; . . . ;N with 0 6 a < 1:
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For a going until 0.9, or so, the mapping just slightly moves the Gauss–Radau nodes, keeping the OðN�2Þ refinement at both
extremities of the radial axis, while values of a very close to 1 lead to almost evenly distributed nodes over (�1,1].

This mapping has been widely studied (see the review by Boyd [11] p. 335, and more recent contributions, for example
[12]). All these analyses are focussed onto finding the value of the mapping parameter a which both increases the critical
time step of a CFL stability criterion and preserves the spectral accuracy of the results. We now use this mapping for an ellip-
tic problem, and with a different goal. We just hope to, at least, delay in N and k the occurrence of complex eigenvalues while
not losing a significant level of accuracy. According to some of the quoted analyses (Hesthaven et al. [13] and Boyd [11]), and
taking into account the fact that we use a not too large range of N values (somewhere in between 30 and 160), we choose
a = 0.9. This value is not too far from the value a = cos (1/2) ’ 0.87 suggested by [11]. As a matter of comparison, 0.99-map-
ping is also considered.

We will see if ellipticity is recovered and evaluate the impact this option has on the numerical accuracy of a flow
simulation.

4.3. Mapping of the derivation operators

Any function f(r) is transformed into h(x) whose first derivative is obtained from
dh
dx
¼ 1

g0ðr;aÞ
df
dr

with g0ðr;aÞ ¼ @g
@r
:

The radial discrete first derivative D is transformed as
D! A � D;
where A is a diagonal matrix whose entries are given by
Aii ¼
1

g0ðri;aÞ
; i ¼ 0; . . . ;N;
where
g0ðri; aÞ ¼
a

arcsinðaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðariÞ2

q ;
In the same way, the matrix D2 which represents d2

dr2 is modified according to
D2 ! A2 � D2 þ B � D;
the diagonal matrix B being defined by
Bii ¼ �
g00ðri;aÞ
½g0ðri;aÞ�3

; i ¼ 0; . . . ;N;
where
g00ðri; aÞ ¼
a3

arcsinðaÞ �
ri

½1� ðariÞ2�3=2 :
4.4. Impact on the ellipticity of the polar-diffusion operator

Figs. 4 and 5 show the way the k(N) configuration which leads to complex eigenvalues has been modified with these 0.9-
and 0.99-mappings, comparing them with Fig. 3. Complex eigenvalues are still occurring, but for higher values of N, viz.
N P 29 and N P 81 respectively, and also for much larger values of k.

4.5. Mapping and accuracy: comparison on a physical configuration

It is instructive to evaluate the accuracy impact of the mapping in a practical case. We now consider the axi-symmetric
floating-zone problem in microgravity environment which is described in detail in [14,15]. A cylindrical liquid bridge, of
height 2H and radius R, is maintained by surface tension between two horizontal isothermal solid disks. Its lateral free sur-
face is submitted to a steady and parabolic heat flux. This triggers and maintains a thermocapillary flow: the surface tension
variations, due to the thermal gradients on the free surface, generate tangential stresses and then viscous driving of the
liquid. The flow is generally studied in a two-parameter space: the Prandtl number (Pr), ratio between momentum and
thermal diffusivities, and the Marangoni number (Ma), ratio between thermocapillary and thermal diffusion velocities. The
axi-symmetric velocity and temperature fields of the flow were deeply studied on a large domain of the parameter space in
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[14,15]. The impact of the numerical treatment of the vorticity singularity which occurs at the junction of the free surface
with the rigid disks was explored in [16,17]. The governing equations are given in Appendix A.

Let wij be the set of the axial-velocity nodal values obtained on the Gauss–Radau grid, and wmap
ij the corresponding set

obtained from the 0.9-mapping applied on this grid. A Gauss–Lobatto grid is used in the axial direction.
Fig. 6 presents two sets of different data. The iso-w lines are plotted in both left panels, with 70 and 100 as cut-off values

in the radial and axial directions. The upper right panel shows the relative difference
Eij ¼
jwmap

ij �wijj
maxi;jjwmap

ij j
; ð13Þ
computed over the mapped grid. The associated scale in this figure indicates that this relative error stays around the value
10�7. Taking now a = 0.99, the relative error E is then amplified by three decades. The relative difference between the 0.9-
mapped and unmapped results is thus not too important. The grid transformation can therefore be used to stay in an elliptic
context.

4.6. Impact of the mapping on the polar-diffusion spectrum

The maximum discrepancy is observed in Fig. 6 to be located in regions of steep vorticity gradient, which corresponds to
high spatial frequencies of the solution. This section shows the reason of this behavior.
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Thanks to the mapping, spectra which were previously polluted by complex eigenvalues are now purely real. But does
this mapping affect, and to which extent, the spectrum itself of the polar-diffusion operator? Let n(a) be the set of the numer-
ical eigenvalues of this operator obtained from an a-mapping. We compare it with the n’s obtained without mapping. One of
the Neumann cases presented in Fig. 1 is chosen. It corresponds to N = 128, k = 4. In Fig. 7 are plotted the relative differences
nðaÞn �nn

nn

			 			 obtained for several values of a. Two regions clearly show up. The first region is the part of the spectra where the

numerical eigenvalues are in good agreement with the analytical ones, the common envelope in Fig. 1. The mapping signif-
icantly affects the accuracy of these numerical eigenvalues, but at a level which is without any practical importance. The
second region lies in the purely numerical part of Fig. 1, wherein the eigenvalues strongly depart from the analytical ones.
This is the region of Fig. 7 which exhibits a very steep increase of the relative differences. The practical consequences of this
behavior in Fig. 7 are precisely exhibited in the upper right panel of Fig. 6.
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5. Conclusion

The Chebychev Gauss–Radau discrete version of the polar-diffusion operator, associated with a Neumann boundary con-
dition at r = 1, does not preserve the expected ellipticity. Numerical complex conjugate eigenvalues, with negative real parts,
are indeed obtained for a set of values of both the azimuthal wave number k and the Gauss–Radau cut-off frequency N. We
have shown that these complex eigenvalues are genuine eigenvalues of the discrete version of this operator. Adopting a
slight transformation of the Gauss–Radau grid which preserves the OðN�2Þ refinement at both extremities of the radial axis,
delays in N and k the occurence of these complex eigenvalues. This clearly indicates that the discrete ellipticity is very sen-
sitive to the location of the nodes in the grid. The effective departure between a numerical flow obtained in this way and the
corresponding Gauss–Radau solution has been observed as globally small. The only zone in the flow where significant dis-
crepancies appear is where a strong gradient occurs. This is related to the impact the mapping has on the polar operator
numerical spectrum. It is indeed important for the high space-frequency eigenvectors.

Appendix A. Governing equations for the thermocapillary problem

The axi-symmetric physical problem is governed by the following non-dimensional Navier–Stokes and energy equations,
in the Boussinesq approximation framework,
@u
@t
þ u � $ð Þu ¼ �$pþ Pr $2 � er

r2

� �
u; ð14Þ

@h
@t
þ u � $ð Þh ¼ $2h; ð15Þ

$ � u ¼ 0; ð16Þ
where u, h and p, respectively are the non-dimensional velocity, temperature and pressure. The unit vectors er and ez define
respectively the radial and axial directions, their origin being located at the center of the liquid bridge (center of the cylin-
der). The operators are defined as follows: $ ¼ erð@=@rÞ þ ezð@=@zÞ;$2 ¼ ð1=rÞð@=@rÞ ðrð@=@rÞÞ½ � þ @2=@z2. Noting u = ver + wez,
one has also $ � u ¼ ð1=rÞ½@ðrvÞ=@r� þ ð@w=@zÞ and u � $ ¼ vð@=@rÞ þwð@=@zÞ.

To complete the set (14)–(16), boundary conditions are specified:
� z ¼ 	1
u ¼ 0 ðno-slip conditionsÞ;
h ¼ 0 ðimposed temperatureÞ;

(

� r ¼ 1

v ¼ 0 ðnon-deformable free surfaceÞ;
@w
@r ¼ �Ma @h

@z f ðzÞ ðstress conditionÞ;
@h
@r ¼ qðzÞ ðheat fluxÞ:

8>><>>:
ð17Þ
with q(z) = (1 � z2)2 the heat flux. The parameter values are Pr = 0.01 and Ma = 106. The function f(z) = (1 � z2n)2 is intro-
duced for regularizing the vorticity singularity, n being here fixed to 13 according to the results of [16,17].

The system (14)–(16) is space-discretized with a Chebyshev collocation method based on radial Gauss–Radau and axial
Gauss–Lobatto grids. Uncoupling the velocity and pressure fields is made with the Projection-Diffusion method, [5,6]. Time
integration is performed with an usual second order finite difference scheme.
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